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FOREWORD

This report was prepared by the University of Dayton Research Insti-
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and Inorganic Polymers", with Dr. I. Goldfarb (AFML/MBP) as project

engineer.

This report describes research conducted from 1 February 1976 to

1 September 1976.

The research described in this report was performed at the Polymer

Branch Laboratory, Nonmetallic Materials Division, Air Force Materials

Laboratory, Wright-Patterson Air Force Base, Ohio by Dr. D. R. Wiff of

the University of Dayton Research Institute. The manuscript was released

by the authors in September 1976 for publication as a technical report.
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INTRODUCTION

Bulk polymeric materials are especially useful in aerospace applica-

tions because of their high strength to weight ratio. An example of this from

the fiber industry is DuPont's Kevlar. In order to "tailor"bulk polymeric

materials for specific applications, through processing or initial synthesis,

knowledge of the inherent characteristics of the material is required.

Examining each individual material's morphology and correlating this with

its mechanical properties is an approach to ultimately 'tailor" these mater-

ials. If a reliable (straightforward) technique existed for determining the

distribution of relaxation times associated with a given mechanical model,

a direct one-to-one correlation should exist between this distribution and

the material's morphology. In addition, the predictability of long term

mechanical properties would be available. It is the purpose of this investi-

gation to present in an illustrative fashion such a technique capable of yield-

ing a reliable distribution of mechanical relaxation times.



BACKGROUND

The problem of inferring mechanical relaxation spectra in linear vis -

coelastic theory is herein treated as a mathematically ill-posed problem.

In previous investigations the established regularization technique of Tik-

honov (Reference 1, 2) was applied to the mathematically ill-posed problem

of inferring a reliable molecular weight distribution from ultracentrifuge

sedimentation equilibrium data at a single angular velocity (References 3-5).

This technique was further applied (Reference 6) to computer generated data

using the well known Fredholm integrals of the first kind encountered in

linear viscoelastic theory, namely

Er(t) = H(T) e(-t/T) dlnT (1)

~2 2CD w
E'(w) = J H(T) w 2 dlnT (2)

-f 1 +w T

and

E"(w) = j H(T) WT dlnT (3)
-o l+w T

where E r(t) is a stress relaxation modulus, E'(w) and E"(w) are the in-phase

and out-of-phase components of the complex dynamic modulus, respectively,

and H(T) is the sought after relaxation spectra.

The difficulty often mentioned in finding the inverse solution to equa-

tions (1), (2) or (3) is experimental error in determining E r(t), E'(w) or

E"(w) can make the determination of H(T) futile. As a result iterative

approximations have been devised so as to control and limit the occurrence

of "wild oscillations" (References 6-12).

The present technique has been successfully applied to computer gen-

erated analogous experimental data (Reference 6). Therefore, it was felt

that application to real experimental data was now necessary. The data
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chosen is the stress -relaxation Master Curve data of NBS polyisobutylene

by Tobolsky and Catsiff (Reference 13). In the following, a brief review of

the theory of regularization is presented. An attempt is made to convey this

theory in light of the method of undetermined multipliers.

3



THEORY

Rewrite the specific equations (1-3) in a more general form

b
Qrx, f(y)] = W(x) = f K(x, y) f(y) dy (4)

a

where O(x) is the experimentally determined function, f(y) is the spectral

response function and K(x,y) is the kernel of the appropriate integral equa-

tion.

Assume the distribution f(y) is continuous and bounded. Therefore,

let a ' y : b and similarly c : x r d. This simply establishes upper and

lower limits on the observed relaxation times and frequencies of measure-

ment, respectively. Furthermore, the functions O(x) belong to some com-

plete metric space T and the functions f(y) to another complete metric space

F, i. e., ý c NV and f E F. Measuring values of O(x) experimentally and know-

ing the functional form of the integral operator which formally maps f(y)

into O(x), the inverse solution, i.e., inferring f(y) given 4(x), is said to be

a well posed problem if: (a) the solution exists for f c F, (b) the solution is

unique in F, and (c) the solution depends continuously on the metrics of F

and T. Tikhonov uses a slightly different concept of correctness. In addi-

tion to the spaces T and F and the integral operator, he assumes a closed

set Ac F, f c A and all 0 c A'. A' is the image of A after application to the

space F of the integral operator, i.e., the kernel and integration process

(Reference 14). Instead of minimizing the conventional functional

da

N[f(y);*(x)] = f {Q[x,f(y)] - O(x)]) dx (5)
c

Tikhonov suggests minimizing

Ma [f(y);O(x)] = N[f(y);O(x)] + af(n)[f(y)] (6)
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where 0(n) is the regularizing functional, by varying Ot and choosing that f(y)

in correspondence with the inffIMn• L.__In the present application
n 0~~~)y]

0 •(n)rf] Z i. dy (7)
i=O " a

where f(i)(y) is the ith derivative of f(y) with respect to y. Now each i. is1

successively varied holding all others constant. In the present application

one OL. was sufficient.
I

From the method of undetermined multipliers presented in elementary

calculus (Reference 15), a physical picture of the regularization used in this

investigation can be achieved.

Most scientists are familiar with the procedure for obtaining the max-

ima and minima of a function on the assumption that the variables in the

function are linearly independent. However, when the variables are con-

nected by certain relationships, i. e., the variables are not all linearly

independent, the maxima and minima are conditional extrema. Consider the

function

g(xl x2 ... """Xm' Xm+1" ""Xm+n) (8)

of (m+n) variables x. connected by n relationships1

i (XX2 x ... ,xm, X m+l,..,xm+n ) = 0 (i=l,2,...,n) (9)

Let the function g attain a conditional extrema at the point Q(X 2"

.. ,m+n ). Assuming the existence of the derivatives at the point Q, the

total differential of g must vanish at Q,

m+nE '--g-dx =0 (10)
•)x s

s=l s

At the same point Q, the following n equations hold [differentiate relation-

ships (9)]
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m+n •$.
S dx 0 (i=1,2,...,n) (11)

s=l s
S S

Multiplying these n boundary functions by the factors X1. X?.... X (Lagrange
1 2' n

multipliers), and adding term by term to equation (10), one obtains

m (.+ + X + Xz -•--+ ... + Xn ) = 0 (12)

s=l (ss s S

Usually these n factors are defined such that the n differentials of the depend-

ent variables vanish.

It seems reasonable to assume that the present integral equations

under consideration [equations (1)-(3) or equation (4)] could have variables

which are not linearly independent, especially when "large" errors exist in

the experimentally determined functions, i.e. fo(x)). These errors might

not seem large, but if the inverse transformation needed to infer If(y)} acts

as an "amplifier" of noise. Then minimizing N[f(y);O(x)] i.e., eqn. (5) will

not yield absolute extrema but rather conditional extrema. Not knowing

exactly the constraints required to control this "noise" one would be led to

apply the logic implied by equation (12). That is, assume various deriva-

tives of f(y) are the constraints and vary the X's (in our nomenclature a.)1

until a minimum in the error analysis is achieved. The "best fit" solution

f*(y) will then be that in correspondence with the smallest or inferior of all

the individual conditional minima. It is just this technique which has been

applied using equations (6) and (7) along with the computational scheme of

quadratic programming (Reference 16). The unique advantage attained in

use of the quadratic programming algorithm is that only positive values for

f(y) are admissible. Recall f(y) is the sought after spectral response func-

tion and negative values would not have physical meaning.



RESULTS

The present technique using regularization and quadratic programming

was applied to the experimental stress relaxation, Master Curve, data pub-

lished by Tobolsky and Catsiff (Reference 13). The values of log E (t) arer

presented in Table 1 along with the corresponding logarithm of the observa-

tion times. It should be noted that even though the data appear to be smooth

on a logarithmic scale, on an absolute scale values may have large fluctua-

tions. That is, if

[log E r(ti)]exp = [log E r(ti)]True +8 (13)

where 6 = log E

then

Er (t) )exp r 1(t i)True = 106 Er(t )True (14)

Computationally we deal with actual values in equation (4). These

fluctuations in the experimental data have a profound influence on the

inverse operational matrix, which is required for inferring f(y). The results

of the present computation are numerically given in Table 1. The relaxation

spectrum was not computed at the same relaxation times as those listed in

the first column. Therefore, the inferred log H(T) and log T values are

presented in the last two columns. They are spread out in the display for

ease of comparison between log H(T) and log H(T'). The results are graph-

ically displayed in Figures I and 2. In Figure 1 the inferred distribution is

represented by circles and the 'best fit" parameterized "wedge and box" dis-

tribution of Tobolsky and Catsiff is the solid line. Using the circled data

of Figure 1 or the data in the last two columns of Table 1 and equation (3),

the computed stress relaxation values, column four of Table 1 and circled

points in Figure 2, were determined. To achieve these results, each

7



individual f(1)(y) [equation (7)] was independently applied. The correspond-

ing Ot was varied and the distribution in correspondence with the minimum

of coefficient of variation between the experimental Er, 2 9 8 (t) and the cal-

culated EF (t) was used. The chosen distribution was in correspondence with

the inferior of these minima coefficients of variation. In the present case

for i=l,

1if b (-dý1)) dy (15)

was the regularization function yielding inf IIJE(t) ex-E r(t) cliI.

rep rc8



CONCLUSION

A computational technique is of value to an experimenter if it is reli-

able, easy to use, and does not consume a large amount of high speed digital

computer time. In the present case, the reproducibility of the log H(T) dis-

tribution almost identical to that achieved by the "a priori" functional '"wedge-

box" shape is very encouraging. The only restriction on the sought after

distribution, in the present case, is that the boundaries of the range of

relaxation times be broad enough so that the function and its derivatives

vanish at the boundaries and that the function is continuous. The present

technique is easy to use because of the simplicity of the mathematical con-

cepts. Finally, the computational time required for a broad search of

numerical values e.g., 10-20 : • : 1020 required only about one second

central processing time on a CDC CYBER 70 computer. With experience

an investigator should know which a . to search and depending upon his usual1~

experimental error, the approximate range of numerical values to scan.

This will further reduce the actual computational time.

Having the capability to easily infer a relaxation spectra from experi-

mental mechanical data within the regime of linear viscoelasticity, one is

led to apply the technique to data from a variety of specimens. As mentioned

within the text this will allow a correlation between mechanical model relax-

ation spectra H(T) and the observed morphology. This should be a step

toward eventual 'tailoring" molecular level processes to yield desired

macroscopic end use morphologies. It is realized that this is a long term

process. However, another more immediate use of this new capability will

be the time saving in being able to do a few experiments and, using existing

viscoelastic theories, predict other unmeasured mechanical behavior of the

material. This will especially be of value for long time mechanical behavior.

Again one should remember that the predictions are only as good as the

theories used in the extrapolation of information. That is, there will always

be the need for experimental checking, but the number of experiments per-

formed will decrease as confidence in the theory increases.

9



Finally, since the present investigation concerns itself only with linear

viscoelastic theory, the greatest impact will come by extending these ideas

to the nonlinear viscoelastic regime.

10
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TABLE 1

Comparison of Mechanical Relaxation Spectrum When "a priori"
Wedge-Box Shape is Assumeda and When No Previous

Functional Form is Assumed (Regularization Technique Applied)
2

(The stress-relaxation data (dyne/cm ) calculated is also presented)

log t Tobolsky & Catsiffa Regularization Technique

log T log log H log log H log T'
(hr) E

r,298(t) (log T) E r(t)calc (log TI) hr

-14.4 10.48' 10.52
.2 10.48 8.77 10.50 9.81 -14.2
.0 10.46 8.96 10.49

-13.8 10.45 9.12 10.47
.6 10.44 9.27 10.46
.4 10.43 9.41 10.45
.2 10.41 9.55 10.43
.0 10.39 9.66 10.41 9.82 -13.0

-12.8 10.37 9.77 10.38
.6 10.34 9,.84 10.35
.4 10.30 9.91 10.31 9.87 -12.4
.2 10.25 9.96 10.27
.0 10.20 10.01 10.21

-11.8 10.15 10.03 10.15 10.10 -11. 8
.6 10.07 10.05 10.07
.4 9.98 10.04 10.01
.2 9.88 9.99 9.89 10.11 -11.2
.0 9.77 9.93 9.79

-10.8 9.65 9.87 9.68
.6 9.52 9.76 9.55 9.81 -10.7
.4 9.39 9.64 9.40
.2 9.26 9.50 9.24 9.41 -10.1
.0 9.12 9.35 9.11

-9.8 8.99 9.21 8.99
.6 8.86 9.09 8.87 8.98 -9.5
.4 8.73 8.95 8.76
.2 8.60 8.83 8.59
.0 8.47 8.70 8.45 8.69 -8.9

-8.8 8.33 8.57 8.32
.6 8.19 8.43 8.19
.4 8.05 8.27 8.01
.2 7.92 8.11 7.94 8.15 -8.3
.0 7.80 7.96 7.81
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TABLE 1 (Continued)

log t Tobolsky & Catsiffa Regularization Technique

log T log log H log log H log T'
(hr) E 298(t) (log T) E r(t)caic (log T') hr

-7.8 7.69 7.83 7.70
.6 7.58 7.71 7.59 7.80 -7.7
.4 7.48 7.58 7.50
.2 7.38 7.46 7.41 7.44 -7.1
.0 7.29 7.33 7.31

-6.8 7.21 7.20 7.24
.6 7.14 7.05 7.13 6.96 -6.5
.4 7.08 6.88 7.07
.2 7.04 6.72 7.03
.0 7.00 6.60 6.98

-5.8 6.98 6.48 6.97 6.45 -5.9
.6 6.96 6.35 6.95
.4 6.94 6.26 6.93 6.37 -5.3
.2 6.92 6.16 6.92
.0 6.91 6.07 6.91

-4.8 6.90 5.97 6.90 5.55 -4.7
.6 6.90 5.87 6.90
.4 6.89 5.78 6.89
.2 6.89 5.68 6.89
.0 6.88 5.58 6.89

-3.8 6.88 5.49 6.88
.6 6.87 5.41 6.86 5.79 -3.5
.4 6.87 5.45 6.86
.2 6.85 5.75 6.85
.0 6.84 5.96 6.84

-2.8 6.82 6.07 6.82 6.14 -2.9
.6 6.81 6.14 6.81
.4 6.79 6.18 6.79
.2 6.78 6.ZO 6.76 5.90 -2.3
.0 6.75 6.20 6.73

-1.8 6.73 6.21 6.73 6.29 -1.8
.6 6.71 6.21 6.70
.4 6.68 6.21 6.68
.2 6.65 6.21 6.65 6.02 -1.2
.0 6.62 6.22 6.62
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TABLE 1 (Concluded)

log t Tobolsky & Catsiff Regularization Technique

log T log log H log log H log T'
(hr) E 't t(hr) E .,298(t) (log T) Er calc (log T') hr

-0.8 6.59 6.22 6.59
.6 6.55 6.22 6.55 6.32 -0.6
.4 6.50 6.22 6.52
.2 6.45 6.22 6.46
.0 6.39 6.22 6.40 6.24 0.0

0.2 6.33 6.22 6.34
.4 6.26 6.22 6.26
.6 6.17 6.22 6.18 6.27 0.6
.8 6.08 6.19 6.09

1.0 5.97 6.14 6.00
.2 5.85 6.08 5.87 6.13 1.2
.4 5.70 6.00 5.72
.6 5.54 5.89 5.53
.8 5.34 5.74 5.33 5.82 1.8

2.0 5.18 5.57 5.14
.2 4.90 5.38 4.94
.4 4.50 5.18 4.71 5.18 2.4
.6 4.00 4.98

a See reference 13.
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